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2 Detailed Summary of Technical Results

2.1 Overview and Background

The main charter of this contract is the implementation and experimentation with motion
planning algorithms that emphasize the exact combinatorial and purely geometric approach.

Motion planning is considered to be one of the major research areas in robotics, and is
one of the main stages in the design and implementation of autonomous intelligent systems,
which is an important long-range goal in robotics research. Motion planning is one of the
basic capabilities that such a system must possess. In purely geometric terms, the simplest
version of the problem can be stated as follows. The system is given complete information
about the geometry of the environment in which it is to operate (and of its own structure),
and has to process it so that, when commanded to move from its current position to some
target position, it can determine whether it can do so withudi colliding with any of the
obstacles around it, and if so plan (and execute) such a motion.

There are mary variants of the problem. A few of those are: motion planning in
environments that are only partially known to the system, compliant motion planning that
allows contact with obstacles, which might be unavoidable due to measurement errors,
optimal motion planning, motion planning with "kino-dyrnamic" constraints, and motion
planning amidst moving obstacles. Still, even the simplest, static, and purely geometric
version stated above is far from being simple, and poses serious chalienges in the design of
efficient and robust algorithms.

Theoretical studies of motion planning have been_ abundant in the p-at decade, a:id the
Principal Investigator has been involved with many of them. It was shown that the main
parameter that controls the computational complexity of the problem is the number k of
degrees of freedom of the system. When k is arbitrarily large (e.g. in coordinated motion
planning of many independent bodies), the problem usually becomes computationally in-
tractable [9,10]. There are several general techniques (one by Schwartz and Sharir [17] and
a more recent and more efficient one by Canny [5]) that have been derived for solving the
problem for arbitrary systemns, but their worst case running time is exponential in k, and
even for available commercial systems with k = 6 degrees of freedom, these algorithms are
very complex and unacceptably inefficient for practical use.

This situation has caused subsequent research to proceed in two divergent directions.
One was to abandon the exact algorithmic approach and design heuristic and approximating
techniques in which the geometry of the space of available placements of the system is not
computed accurately but only coarsely approximated, or is "bypassed" by other heuristic
techniques. The resulting systems are generally not robust - they might miss free i' otions
and declare incorrectly the desired destination as unreachable. Moreover, even witl the
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heuristic shortcuts, these systems are still inefficient, and most of them perform well (within
the above mentioned limitations) only on 'toy' examples consisting of only a few obstacles.

The other approach was to continue to cling to the exact combinatorial algorithmic
paradigm, but begin by attacking problems with a small number of degrees of freedom,
analyze them thoroughly, and develop efficient algorithms whose worst-case running time
is even better than that of the general technique of Canny. This approach, which is the one
followed in our research, is a 'bottom-up' approach, that aims to solve simpler systems first,
in the hope that these solutions will bc usable as routines in the solutions of more general
problems. Moreover, this approach leads to better understanding of the combinatorial
structure of the space of free system placements, and can therefore result in solutions that
are faster than those yielded by heuristic techniques.

Although many motion planning problems with very few degrees of freedom are not very
realistic, some of them do correspond to problems that can arise in practice. For example,
the problem involving a rigid polygonal object moving in the plane amidst a collection of
polygonal obstacles is actually the problem of navigating a robot vehicle, and has only three
degrees of freedom. Navigating a circular robot has only two degrees of freedom. These
problems have been successfully attacked by the exact algorithmic technique, and a battery
of efficient techniques for their solutions has been developed (see [16], [11], [14], [12], [8]).
Some of these solutions have in fact been implemented and tested (see e.g. [13], and also
[4]), although no real production system has resulted from these experiments, as far as we
know.

in the present research we have chosen another class of problems involving three degrees
of freedom and have the potential of being applicable in real-life problems. This class
involves a rigid object flying through 3-dimensional space, by translation only, amidst a
collection of polyhedral obstacles (which are static, and whose geometry is known to the
system, as in our basic assumptions made above). In full generality, the flying motion of
a rigid object in 3-space involves 6 degrees of freedom (with rotation) and is too complex,
in the present state of the field, for exact and practical algorithmic solution. The case of
allowing only translations can still be used in practice in several ways: (i) If the size of
the moving object is much smaller than the sizes of the obstacles, we can approximate the
object by a point, which has only the three degrees of freedom of translation. (ii) If the
moving object has a generally rounded shape, we can approximate it by a moving ball, again
with only three degrees of freedom. (iii) We can use the solution for translational motion
planning to obtain an approximate solution of the general problem, by discretizing over the
range of available orientations, solve the purely translational problem for each orientation,
and look for purely rotational passages between adjacent orientations; this technique has
been recently proposed for planar motions in [1], and it seems applicable to 3-dimensional
problems as well.

This problem has already been discussed in a pioneering paper on algorithmic motion
planning [15] 11 years ago. However, no analysis, nor even any consideration of algorithmic
efficiency, has been provided there. Recently the problem has been studied and analyzed
in several papers. The case of a moving point has been studied in [6]. It was shown
there that if the polyhedral obstacles consist of n faces and 7 convex edges (that is reflex
edges from the point of view of free space), then the free space can be decomposed into
O(n + r2 ) tetrahedra, in time O(nr + r 2 logn). Having this decomposition available in the
form of a 'connectivity graph', whose vertices arc theue tetrahedra and whose edges connect

4



pairs of adjacent tetrahedra, facilitates a reduction of the motion planning problem to a
simple (and discrete) path searching problem in that graph. The solution given in [6] is
slightly complicated and requires the use of a few sophisticated algorithmic techniques. A
generalization of the problem to the case of an arbitrary translating polyhedral object has
been studied in [2], which showed that the complexity of a single connected component of
the free configuration space is at most 0(az7/3), which is a significant improvement over
the naive (and worst-case tight) 0(n 3 ) bound on the complexity of the entire configuration
space. A major theoretical breakthrough of our research in the past year is an improvement
of this bound to O(n 2 log2 n) [3]. Note that a single component of the free configuration
space, namely the one that contains the starting position of the robot, is all we need, because
all placements reachable from this starting position must necessarily lie in that component.
The paper [2] also presents a randomized algorithm to compute a single component in time
that is close to 0(n 1/3). By plugging our improved complexity bound into this algorithm,
one can show that its running time drops down to close to 0(n 2 ), which constitutes a
significant and near-optimal result, since in the worst case the complexity of a single cell
can indeed be quadratic.

2.2 System Description

The iniplementation of our 3-d motion planning system is being carried out by a full-time
programmer (Ms. Estarose Wolfson) at the Robotics Lab of the Courant Institute at New
York University. Currently, the implementation of the simple case of a moving point has
been completed, and testing of it is nearly complete. Ih the few months ahead we plan
to perform extensive experimentation with the system, and interface it to receive input
directly from commercial CAD systems, and to develop a nice graphics interface for its
output. We hope to bring it to the level that it can be used commercially (at least in
a prototypical sense) in various applications. With the availa.bility of additional support
(currently pending), we hope to continue with the more adv.nced versions, of the system,
for more complex moving objects, as mentioned above.

A major principle in the system desi6 n was to implement a system whoýc worst case
running time matches the best tvailable theoretical solutions (in oir case, that of [6]),
but to trade sophisticatel algorithmic techniques by simpler methods whenevei pussible
(without hurting tl.e overall asymptotic rauning time). To underscore this point, it should
be noted that implementing geomet-ic algorithms for 3-d problems is a fairly tedious task.
Several basic problems that arise have been givon efficient theoretical solutions, but their
implementation is very complicated and troublesome. As an illustration, consider the spatial

point location probiem, whicb arises a lot in our implementation. A simple version of the
problem asks to dutermine, for an arbitrary query point, the obstacie face it 'sees' directly
above it. There are sevcral recent efficient techniques for solving this problem, but they
are very cumbersome to iiplement. In cur system we have used a simpler solution that

proceeds by traversing faces of the obstacles in a certain order until the one lying directly
above tlhe point is found. This method is very simple to implement, and its total zost turns
out in our case to be within the allowed theoretical bound. rrhis policy has been followed
in all other cteps of our algorithm.

Here is a brief sketch of the structure of our system (similar to last yoar's report).

OBJECTIVES and TERMINOLOGY: Given any two points in !-space and a set of
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polyhedral obstacles having a total of N faces, we wish to determine whether there is a
path between these points (avoiding intersections with the obstacles) and if so find one such
path. This is the inotioii planning problem of moving a point through a three dimensional
space consisting of non-overlapping obstacles. To do this, the complementary space of the
obstacles (with respect to some large imaginary enclosing box), called the free space, is
decomposed into convex units (cells), which form the nodes of a connectivity graph whose
edges connect pairs of adjacent cells. These cells have walls consisting of z-vertical planar
faces and top and bottom 'covers' each consisting of facets from a unique obstacle. Thus
these basic cell units and the connectivity among them will allow us to travel through
free space to reach our destination, provided it lies in the same connected component of
free space as our initial position (which is the same as belonging to the same connected
component of the connectivity graph). Our program will be later extended to include the
case of a moving ball and an arbitrary 3-D polyhedral object moving (by translation only)
through the environment.

The general technique, as developed in [6], [2], and others, is to construct a vertical
cell decomposition of the free space. Such a decomposition is obtained by erecting vertical
walls up and down from each reflex obstacle edge (i.e. an edge whose dihedral angle within
the free space is greater than 180 degrees). These walls are extended until they hit other
obstacle faces (or, failing this, to infinity). Collectively, they partition free space into convex
subcells of the form discussed above, and their adjacency through the vertical walls gives
us the desired connectivity graph.

We have modified this methnd so that walls arc erected only fr f.il r,, , de
- ... .... ... .-J I N 'ORLL JUN'$ r"uflu- edge:,,;,

which are edges e with the property that the vertical plane passing through e is such that the
obstacle containing e lies (locally) only on one side of the plane. This coarser decomposition
yields cells that are only "z-convex", meaning that any z-vertical line intersects such a cell
in a connected segment. It is still relatively easy to navigate through such a cell, and in
practice the saving in this coarser scheme is expected to be significant. We denote by r the
total number of reflex edges and by R the number of full reflex and inverse reflex edges
(defined in analogy to reflex edges except that the free space lies locally on one side of the
vertical plane through the edge). As an illustration, suppose we have a spherical obstacle,
which we approximate as a convex polyhedron with k edges. In this case we have r = k
(every edge is reflex), but R is only propnrtional to , This indicates that ouar coarbe
decomposition can be expected to be much more efficient in practice.

A key concept in our method is that of obstacle silhouettes. Informally, these are loci
of points on the obstacle boundaries where the z-vertical cross section of the obstacle has
a discontinuity. Such a silhouette consists of a connected closed cycle of full reflex obstacle
edges, inverse reflex edges, or a combination of such edges; see Figure 1.

The silhouettes contain most of the information necessary to achieve our coarse cell
decomposition, and the total size of all silhouettes is only proportional to R and not to N,
again implying significant savings in practice (and theory).

In addition, we use the notion of half reflex edges, which are all the remaining reflex
edges, whose two adjacent faces lie on opposite sides of the vertical plane passing through
the edge. Thus, if we were to erect vertical walls from such an edge (which we do not), the
wall would extend only upwards or only downwards into free space. Half reflex edges are
used in the later stages of the program to plan passages through the resulting cells.
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Figure 1: An example of the two silhouettes generated by an object with a hole. Thick solid
lines are the full reflex edges; thick dashed lines are the inverse reflex edges; and the thin
solid lines are the remaining edges of the object. The image has been rotated to provide a
coherent view.

The input to the system consists of the obstacies. These are arbitrarily complex 3-,4
polyhedra, that may have holes, tunnels, handles, etc. We assume that they are given by
their boundary representation, where each face is already triangulated, and comes with its
outward-directed normal vector. The next stage of our implementation w'll obtain the input
directly from CAD data bases or other large data bases through appropriate interfaces.

METHOD and PROGRAM:

For lack of space, we only give a very brief outline of the system.

(1) We calculate the obstacle silhouettes by a breadth first search on the -erticas and :dgts
of each obstacle, and connect them locally into appropriate lists.

(2) We next find the "critical points" of the silhouette interact;ons by perfbrnming a planar
sweep along the z direction on the xy-projections of the silhouettes. The critical p.•ints
are the x minimum and maximum points of the branches of the silhouettes, the midpoints
where tunnel holes change from being inside to outside the obstacle (inverse to reflex edges
of silhouette) and vice-versa, and the intersection points of two projected silhouettes whose
obstacles axe adjacent in the z-direction of 3-space. The running time of this ctage is
O(N + (R + S) log X), where X < R is the number of chains and S < R12 is che number of
intersections between them.

During the sweep we need to compute the z coordinate of a point on some surface whose
z, y coordinates are specified. This is a step that is usually accomplished by point location
techniques that have been recently developed (see e.g. [7]). Since these techniques are
rather involved, we replaced them by a simpler tumbling technique, which finds the desired
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Figure 2: Example of the top and bottom cover of the cell generated by tumbling from one
critical point to another along the central object's outer silhouette. The thick solid lines
are the etchings on the covers; the thin solid and dashed lines are the triangulated objects.

point by tracing a path along the sur.ace from a known point (on its silhouette) towards the
desix A point, cros3ing the triangular faces of the surfaces in order until the desired point
is reached. Tumbling appears to be expensive, but is actually required only for locating
x-minimum critical points of cells (the first points of the x-monotone chains), which makes
its cost lie well within the allowed theoretical bound. The cost of this step is O(N.X) in the
worst case.

(3) For each cell silhouette we complete the construction of the z-vertical walls erected
from the silhouette edges. For this we need to find their top and bottom intersections with
the --------------- tac by 'tumbng' .u te pah of the chain of edges of the silhoaette from one
critical point to another, knowing that between any two critical points the z neighbor above
(and below) the edge will remain on the same obstacle patch; see Figure 2. The cost of this
step is at most O(J + S).

(4) We are now in a position to actually construct our cells and the connectivity between
them. We split each chain of reflex cdges at its critical points, and then recombine the
resulting chain fragments (and the veitical walls attached to them) to form the contours
of new coherent cells. The recombination is done locally around each critical point, by
attaching chain fragments and their walls to adjacent fragments-and-walls meeting them
at this point, and by determining locally the geometry of the resulting incident cells; see
Figure 3. The step is implemented as a simp!e traversal of the split chains with appropriate
'jumps' between them at the critical points, and its cost is shown to be O(NR).

(5) The cells just produced are "z-convex" - any -,ertical line intersects such a cell in a
connected interval, but their zy-projections can still have an arbitrary polygonal shape. The
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Figure 3: Example of a reconstructed cell generated by the hole in the object with covers
on a surrounding object. The thick solid lines are the top and bottom covers; the thick
dotted lines outline the z-vertical walls of the cell. Again the object has been rotated to
afford a better view.

next step decomposes our cells further into "more convex" subcells, each being z-convex and
having a convex zy projection. This is achieved by an appropriate planar sweep through
the xy projection of each cell, and can be done in total time O(NR).

(6) Next we find certain actual paths through the cells. These paths connect some center
point within each cell to entry / exit points on the vertical walls separating the cell from
adjacent ones. To d& this, we pass a vertical plane through the center point p and some
entry/exit point q, and trace the intersections of this plane with the top and bottom covers
simultaneously, using our tumbling method. Our strategy is to remain always at mid-
heih1tf Vetween the current top and bottom faces. We thus obtain a polygonal path whose
xy-projection is a straight segment. We collect all these paths and store them in a data file,
to be used by the final motion planning phase. With some care, the cost of this step can
also be made O(NR).

(7) The Motion planning phase: Finally, given a source point p and a target point q,
we want to determine whether there exists a free path between p awd q, and, if so, produce
such a path. For each of the points p, q we find the cell containing the point or indicate
that the point is not in free space (in which case no motion planning has to be done). For
points in free space, let c1 , c2 denote the cells containing p and q respectively. We also find
the path from p to the center of cl and from the center of c2 to q. We next test if these two
cells are in the same connected component of our coinnectivity graph. If this is the case,
we find a path in the graph connecting c1 and C2 by a simple breadth first search. We then
construct the actual path from p to q by concatenating the subpaths from p to the center
of cl, from the center of each cell to an exit point on the vertical wall separating it from the
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next cell, from that point to I lie center of the next. cell, and finally from the center of C2 to
q. The output of this phase is simply a sequence of points, given by their coordinates, so
that between any two consecutive points the path proceeds along a straight segment. The
running time of this step, and the size of the output path, are both O(N + R 2 ).

2.3 Suppleimental Theoretical Research

Besides work on the system proper, we have also continued to work on related problems
in motion planning and in computational geometry. Some parts of this work are closely
relevant to the research project, while other parts cover more basic problems in computa-
tional geometry. The main result related to the research project is the improved bound,
already mentioned above, on the complexity of a single cell in an arrangement of triangles
in 3-space, which in turn leads to an efficient algorithm for motion planning of the type
we study in the project (see item [20] in the list of publications in Section 3). Among our
other results i.hat are more relevant to iobotics, we mention: improved bounds and efficient
algorithms for certain motion planning problems with thiee degrees of freedom (items [3,21]
in the list of publications in Section 3), analysis of the complexity of the union of polyhedra
in space, upper envelopes of Voronoi surfaces and their applications in pattern recognition
[7], optimal placement problems of polygons in a polygonal environment [11], computing

a single face in an arrangement of line segments [4] and some extensions of this algorithm
[16], a note on an earlier motion planning algorithm [28], and miscellaneous results in com-
putational geometry, including efficient techniques for ray and circle shooting in polygonal
rcgion -[]J, im,,pioved teChniq(lues for output-sensitive hidden surface removal [12], geometric

location and other optimization problems [5,6,23,24,26], and applications of a new space
partitioning technique [8]. A bibliography of the publications that acknowledge support by
the grant (in which these references appear) is given in Section 3 below.
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width of a planar set, Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms (1991),
pp. 449-458.

2. B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir and J. Snoeyink, Computing a
face in an arrangement of line segments, Proc. 2nd ACM-SIAM Symp. on Discrete
Algorithms (1991), pp. 441-448.

3. B. Aronov, J. Matougek and M. Sharir, On the sum of squares of cell complexities in
hyperplane arrangements, Proc. 7th Symp. on Computational Geometry (1991), pp.
307-313.

4. D. Huttenlocher, K. Kedem and M. Sharir, The upper envelope of Voronoi surfaces
and its applications, Proc. 7th Symp. on Computational Geometry (1991), pp. 194-
203.

S. M. Katz, M. Overmars and M. Sharir, Efficient output sensitive bidden surface removal
for objects with small union size, Proc. 7th Symp. on Computational Geometry (1991),
pp. 31-40.

6. P.K. Agarwal and M. Sharir, Counting circular arc intersections, Proc. 7th Symp. on
Computational Geometry (1991), pp. 10-20.

7. 7. C1hazl',• VH. , ,ela...n,, M. Grigni, L. Guibas, J. iiershberger, M. Sharir and
J. Snoeyink, Ray shooting in polygons using geodesic triangulations, Proc. 18th Int.
Colloq. on Automata, Languages and Programming (1991), 661-673.

8. B. Aronov and M. Sharir, On the zone of a surface in a hyperplane arrangement, ,-.•c.
2nd Workshop on Algorithms and Data Structures (1991), 13-19.

9. P.K. Agarwal and M. Sharir, Applications of a new space partitioning scheme, Proc.
2nd Workshop on Algorithms and Data Structures (1991), 379-391.

10. J. Matou~ek, N. Miller, J. Pach, M. Sharir, S. Sifrony and E. Welzl, Fat trianglesdt,toCr,-I,,, B;naprly r, n ho, co, Pr. ` [] ,rf
........ r m An h . ILEE Synp. on Foundations of Computer

Science (1991), to appear.

Invited Presentations

1. M. Sharir, Parametric searching / Union of fat triangles, Two talks at the Dagstuhl
Workshop on Computational Geometry, October 1990.

2. M. Sharif, On the zone theorem and complexity in arrangements, 17th Computational
Geometry Day, New York University, May 1991.

3. M. Sharir, A correct proof of the zone theorem and its generalizations, 1st Workshop
on Computational Geometry, University of Utrecht, August, 1991.
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4 Description of Research Transitions and DoD Interac-
tions

None so far.
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5 Description of Software and Hardware Prototypes

Please see Section 2 for a detailed description of the system being implemented. It is our
hope that the system could be commercialized. Likely 'customers' might be the space
industry (for programming flying robots), and CAD and related systems (enhancing such a
system with navigation capabilities through 3-D scenes).
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